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Abstract
Accurately predicting home insurance premiums is a critical challenge for insurers, as tradi-
tionalmethods strugglewith the complexity and volume ofmodern data. This study leverages
machine learning to address this problem, applying a range of supervised models—including
linear regression, lasso regression, ridge regression, decision trees, random forests, gradient
boosting, and extreme gradient boosting (XGBoost)—to a comprehensive home insurance
dataset with 66 features. After preprocessing to retain 50 key variables, the models were
trained and evaluated, with random forests, gradient boosting, and XGBoost emerging as
top performers, achieving R-squared scores of 0.8137, 0.8014, and 0.8344, respectively.
Hyperparameter tuning further improved XGBoost’s performance to an R-squared of 0.8380,
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making it the preferred model. Using Shapley Additive Explanations (SHAP), we identified
the top 40 influential features, such as building age, number of bedrooms, property type, and
recent claim history, boosting the R-squared to 0.8799 (training) and 0.8383 (testing). These
findings highlight XGBoost’s potential to deliver precise premium predictions. By adopting
this approach, insurers can enhance pricing accuracy, improve transparency through SHAP-
driven insights, and inform fairer policy decisions.

Keywords: Home Insurance Premium, Machine Learning, Shapley Additive Explanations,
XGBoost.

1. INTRODUCTION

The insurance industry is undergoing a transformative shift driven by advancements in data analyt-
ics and machine learning, enabling companies to extract actionable insights from vast datasets to
make informed, data-driven business decisions [1]. By leveraging sophisticated machine learning
techniques, insurers can optimize operational costs, enhance customer experiences, and improve
risk management strategies. These techniques have been successfully applied across various in-
surance domains, including fraud detection, customer churn prevention, customer segmentation,
and premium prediction [2]. In the context of home insurance, machine learning offers significant
potential to refine premium pricing by analyzing diverse customer and property characteristics,
ensuring that premiums reflect the underlying riskswhilemaintaining competitiveness in themarket.
This study focuses on applying machine learning models to predict home insurance premiums,
harnessing customer and property data to develop accurate and interpretable predictive models.
In insurance, a premium represents the price paid by policyholders to secure protection against
specified risks. The process of premium calculation involves assessing the probability distribution
of risks to determine a price that safeguards the insurer’s financial viability [3]. For home insurance,
policies typically cover a range of perils, including fire, water damage, theft, property damage,
and natural disasters such as earthquakes [4]. Accurate premium pricing is critical, as it ensures
that insurers can cover potential losses while maintaining operational sustainability. However, the
complexity of risk assessment in home insurance is compounded by the diverse factors influencing
risk, such as property location, construction materials, and policyholder demographics. Traditional
actuarial methods, while effective, often struggle to capture the nuanced interplay of these factors,
making machine learning an attractive solution for improving predictive accuracy and efficiency.
One of the most pressing challenges for insurance companies is striking a balance between acquiring
and retaining customers and ensuring financial stability. Setting premiums too low can lead to
insufficient funds to cover claims, risking long-term insolvency. A notable example is United
Property and Casualty Insurance Co. (UPC), which faced insolvency due to its inability to cover
substantial losses from widespread windstorm damage claims, ultimately forcing the company to
cease operations and liquidate assets to settle outstanding obligations [5]. This case underscores the
critical need for precise risk assessment and premium pricing to avoid financial distress. Conversely,
setting premiums too high can deter potential customers, reducingmarket share and competitiveness
[6]. Machine learning models address this challenge by enabling insurers to estimate premiums that
align with the specific risk profiles of properties and policyholders, thereby optimizing financial
stability while appealing to a broad customer base. Moreover, these models can adapt to emerging
trends, such as increasing climate-related risks or shifts in property market dynamics, ensuring that
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insurers remain resilient in a rapidly changing environment. The growing adoption of machine
learning in insurance also reflects broader industry trends toward personalization and efficiency. By
analyzing historical data and real-time inputs, machine learning models can uncover patterns and
correlations that traditional methods might overlook, leading to more accurate premium predictions
and better risk management. For instance, predictive models can incorporate variables such as
regional weather patterns, crime rates, or property age to refine premium estimates, offering a
more granular understanding of risk. Additionally, the interpretability of these models is crucial
for building trust with regulators and policyholders, as it ensures transparency in how premiums are
determined. This study aims to applymachine learningmodels to predict home insurance premiums,
evaluate their predictive performance to identify the most effective model, and use SHAP (SHapley
Additive exPlanations) to interpret the influence of key features on premium pricing. By doing
so, it seeks to contribute to the growing body of research on data-driven insurance solutions and
provide practical insights for insurers aiming to balance profitability with customer satisfaction.
The contributions of this work are as follows:

• Development of machine learning models to accurately predict home insurance premiums
based on customer and property characteristics.

• Identification of the most effective machine learning model for premium prediction through
comparative performance evaluation.

• Analysis of influential features impacting home insurance premiums using SHAP for en-
hanced model interpretability.

This work is structured as follows. Section 2 reviews past literature, Section 3 discusses the method-
ology applied, and Section 4 presents the results and findings. The conclusion and recommendations
are provided in Section 5.

2. RELATEDWORK

The insurance industry has increasingly adopted machine learning (ML) to tackle complex chal-
lenges in premium prediction, risk classification, and claims management, driven by the demand
for data-driven decision-making in a competitive and regulated environment. As a core compo-
nent of cognitive computing, ML enables insurers to analyze large datasets, identify patterns, and
generate accurate predictions that traditional actuarial methods often fail to deliver. By leveraging
ML algorithms, insurance companies can optimize premium pricing, improve risk assessment, and
streamline operations, ultimately enhancing customer satisfaction and financial stability. This lit-
erature review synthesizes prior research on ML applications in insurance, focusing on premium
cost prediction, model performance, and interpretability. While much of the existing work targets
health and motor insurance, this study addresses the underexplored domain of home insurance
premium prediction, drawing on insights from related fields to inform its approach. Significant
research has demonstrated ML’s effectiveness in predicting insurance premiums, particularly in
health insurance. For example, [7] explored health insurance cost prediction using regression-based
models, including linear regression, multilinear regression, and polynomial regression. The findings
indicated that polynomial regression with a degree of 3 achieved the highest performance, with an
R² score of 0.80 and an accuracy of 80.97%. The study emphasized the limitations of traditional
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methods, noting that the rapid growth of data makes manual calculations inefficient and time-
consuming, advocating for ML adoption to handle large datasets and enhance prediction accuracy
through relevant feature inclusion. Similarly, [8] investigated a variety of ML models, including
artificial neural networks (ANN), gradient boosting (GB), k-nearest neighbours (KNN), support
vector regression (SVR), decision trees (DT), random forests (RF), and linear regression, to predict
health insurance costs. The results showed that gradient boosting achieved the highest accuracy
at 92%, highlighting its potential for rapid policy-making and cost estimation. Another study, [9],
applied an ANN-based regression model, achieving an accuracy of 92.72% in health insurance
premium prediction, reinforcing the suitability of neural networks for complex datasets. MLmodels
have also been applied to other insurance domains, such as motor and property insurance, with an
emphasis on risk classification and claims prediction. For instance, [10] employed decision trees,
random forests, and XGBoost to assess insured risk profiles in real estate insurance. The results
indicated that XGBoost outperformed other classifiers, establishing it as a robust model for risk clas-
sification and premium prediction. Similarly, [11] compared SVR, random forests, and XGBoost for
predicting insurance claim values. The findings revealed that SVR performed poorly, particularly
for high-value claims, while XGBoost demonstrated superior performance with low error rates. To
improve interpretability, feature importance plots were used to identify key predictors influencing
claim values. These findings align with [12], which applied regression-based ensemble models,
including XGBoost, gradient boosting, and random forests, to predict medical insurance costs.
By incorporating SHAP (SHapley Additive exPlanations) and Individual Conditional Expectation
(ICE) plots, the study enhanced model interpretability, identifying the most influential features
affecting premium prices. The comparative analysis showed that XGBoost achieved an R² score
of 0.864, though it required substantial computational resources, while random forests were more
computationally efficient, and gradient boosting excelled in large-scale predictions. The integration
of big data with ML has significantly expanded the capabilities of predictive modeling in insurance.
[13] explored big data analytics in insurance, noting that the volume and complexity of mod-
ern datasets surpass the capabilities of traditional decision-making systems. The study developed
four ML classifiers—Adaboost, Naive Bayes, k-nearest neighbors, and decision trees—to analyze
insurance claim data. Adaboost achieved the highest performance, with a precision of 64.9%,
accuracy of 66.2%, and F-score of 65.3%, while Naive Bayes performed poorly, with an accuracy
of 59%, a recall of 59%, a precision of 60.2%, and F-score of 57.7%. The work underscored
ML’s potential to streamline claims handling and enhance risk assessments in high-volume data
environments. Similarly, [14] developed a real-time health insurance cost prediction model using
regression techniques, including simple linear, multiple linear, ridge, lasso, and polynomial regres-
sion. Polynomial regression produced the best results, demonstrating its effectiveness in enabling
insurers to determine premiums quickly and manage healthcare expenses efficiently. Tree-based
ML models have become prominent in insurance pricing due to their ability to capture complex
data interactions. [15] applied gradient boosting models to insurance pricing, highlighting their
superiority over traditional generalized linearmodels (GLMs). The study demonstrated that gradient
boosting could generate tariffs that accurately reflect underlying risks, reducing adverse selection
and ensuring affordable premiums for policyholders. In a related study, [16] explored tree-based
methods, including regression trees, random forests, and gradient boosting, noting that decision trees
serve as the foundation for these algorithms by grouping policyholders with similar risk profiles.
These models depend on selecting appropriate loss functions tailored to the insurance data, enabling
precise risk segmentation and pricing. The study emphasized that tree-based models provide valu-
able insights into data interactions, which are essential for insurers optimizing pricing strategies.
Deep learning (DL) models, though less prevalent in insurance pricing, have been investigated for
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their predictive capabilities. [17] noted the increasing adoption of DL in risk pricing, particularly for
longevity and accident risk prediction. [18] compared aDLmodel to logistic regression and decision
trees for accident risk prediction using telemetry data. Although the DL model outperformed others
in certain metrics, logistic regression was favored due to its greater interpretability. Similarly, [19]
evaluated a DL model against logistic regression and random forests for driver risk categorization,
again preferring logistic regression due to interpretability challenges and limited telemetry data
availability. These studies highlight a critical trade-off in DL applications: while DL models can
achieve high predictive accuracy, their complexity often restricts their use in regulated industries
like insurance, where transparency is essential. Dynamic pricing systems, enabled by ML, have
shown considerable promise in insurance. [2] developed a dynamic pricing system for online motor
vehicle liability insurance using random forests, gradient boosting, and DL models. The study
demonstrated that ML algorithms enabled rapid development, monitoring, and updating of pricing
models, achieving efficiencies unattainable by traditional methods. The findings concluded that
high-quality prediction models with fast implementation speeds provide significant benefits, such
as task automation and improved customer responsiveness. However, applying ML to pricing
faces challenges, particularly due to regulatory requirements. [20] emphasized the importance
of cross-validation techniques to minimize bias and ensure fairness in ML-based pricing models,
addressing concerns about equitable premium determination. Interpretability remains a critical
consideration in ML applications for insurance. [21] investigated the interpretability of tree-based
models using SHAP and feature importance techniques, noting that SHAP is particularly effective
for complex models like XGBoost and neural networks, while feature importance is commonly
applied to simpler models like linear regression and decision trees. Similarly, [22] applied linear
regression, decision trees, and random forests to predict insurance premiums, using SHAP to explain
model outputs. These studies highlight the importance of transparent models in fostering trust
with regulators and policyholders, especially when determining premiums that affect customer
affordability. The reviewed literature indicates that MLmodels, including linear regression, random
forests, decision trees, gradient boosting, XGBoost, SVR, KNN, and neural networks, have been
widely applied to predict insurance premiums, classify risks, and manage claims. Regression-
based models enable quantification of independent variable impacts, facilitating accurate premium
predictions [23]. Among these, XGBoost and gradient boosting consistently demonstrate superior
performance, though their computational demands can pose challenges. While health and motor in-
surance have received significant attention, there is a notable gap in applyingML to home insurance
premium prediction. Most studies focus on health insurance datasets, leaving home insurance—
a domain with unique risk factors such as property characteristics and environmental hazards—
relatively underexplored. This study aims to address this gap by applying ML models to historical
home insurance data to predict premiums and identify influential features using SHAP for interpret

2.1 Research Gap and Problem formulation

People and businesses face risks daily, and these risks can lead to losses such as illness, accidents, or
damage to property. Insurance companies or insurers, help protect against these risks by transferring
the financial burden to themselves. They do this in exchange for a fee called a premium. FIGURE 1,
illustrates this process. For insurance companies to maintain their financial stability, they must set
premiums cautiously based on how much risk each customer has or their risk profile [15]. Before
setting a premium, insurance companies assess the risks by evaluating different risk factors. In the
case of home insurance, they look at several things, like how the building is used (e.g., as an office,
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warehouse, etc.), the financial health of the person buying the insurance, the building’s location,
what the building is made of and how it is structured, whether safety features like fire protection
or surveillance are installed, and the applicant’s past insurance claims [24]. This information helps
insurance companies understand the risks and the amount of loss that would be incurred if a claim
is made. The information also helps them suggest ways of reducing the risks from occurring by
suggestingmeasures like surveillance installation or renovations in some parts of the house/building,
etc.

Figure 1: Insurance cycle (source [15])

While this process is detailed, it can be slow and hard to scale and sometimes depends on expert
judgment, which might be biased. Machine learning offers a way to make this process fast and
efficient by learning from past data [2]. Despite this, most ML models are considered ”black
boxes” because it’s hard to understand their decision-making process. This study aims to solve this
problem by applying SHAP. It explains how each feature contributes to the prediction, therefore
helping in understanding the factors that matter the most. This, in turn, makes the model more
useful and transparent for insurance companies.

3. DATA AND METHODS

3.1 Data Description

This research used home insurance data from Kaggle to develop an ML model to predict home
insurance premiums. The chosen dataset originated from the ’Universite de Technologié de Troyes
(UTT), France’ and was originally used in an R programming language course to gain insights.
It includes policies spanning five years, from 2007 to 2012. UTT obtained the dataset from a
home insurance company, and it contains various policy characteristics, such as building attributes,
geographical zones, and coverage details, among others. In total, the dataset consists of 256, 136
observations with 66 features that describe the policy characteristics. These features provide valu-
able information for developing a comprehensive home insurance premium prediction ML model.
We chose the ’LAST ANN PREMGROSS’ variable as our target variable, as our goal is to develop
a machine learning predictive model that can accurately predict home insurance premiums. The
remaining variables in the dataset will serve as our features, which will be utilized to estimate the
premium amount that will be charged to a client. The dataset variables are defined in Tables A1 and
A2, respectively in the appendix.
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3.2 Machine Learning Models

Machine learning techniques enable computers to perform tasks by learning from training data
and recognising patterns without the need to program them to run a specific task explicitly. In
the context of ML, data has examples, and a set of features or variables describes each example
[25]. The usefulness of an ML model in a specific task is evaluated using performance metrics
that improve as the model gains more experience. To evaluate the performance of ML algorithms,
a range of statistical and mathematical approaches is employed [11]. Once the learning process
is over, the trained models are used to predict, classify or cluster new sample (test) data based
on the knowledge acquired during the learning phase. Machine learning can be divided into two
main groups: supervised and unsupervised [11]. Supervised machine learning deals with labeled
data and maps inputs to outputs [11]. Unsupervised machine learning algorithms look for patterns
and structures in data and therefore do not need data labels. Unsupervised learning techniques
are frequently used in clustering and dimension reduction [26] tasks. This work applied various
supervised machine learning models to predict home insurance premiums.

3.2.1 Linear regression

Linear regression assumes a linear relationship between the explanatory (independent) variables
and the dependent variable, making it a simple yet effective method for predictive modeling. It is
particularly suitable for small sample sizes due to its simplicity and ease of interpretation. However,
its performance may degrade when dealing with a large number of predictor variables, as it struggles
to handle complex relationships or multicollinearity [27]. The goal of linear regression is to find the
optimal coefficients that minimize the loss function, which is typically the sum of squared errors
between the predicted and actual values. The linear regression model can be expressed as:

𝑦𝑖 = 𝜃0 + 𝜃1𝑥𝑖1 + · · · + 𝜃𝑛𝑥𝑖𝑛 + 𝜖𝑖 , (1)

where 𝑦𝑖 is the dependent variable for the 𝑖-th observation, 𝜃0 is the intercept, 𝜃1, . . . , 𝜃𝑛 are the
coefficients for the independent variables 𝑥𝑖1, . . . , 𝑥𝑖𝑛, and 𝜖𝑖 is the error term. The loss function for
linear regression, which measures the model’s fit, is the mean squared error (MSE), defined as:

𝐿 (𝜃) = 1
𝑛

𝑛∑
𝑖=1

(
𝑦𝑖 − 𝜃0 −

𝑛∑
𝑘=1

𝜃𝑘𝑥𝑖𝑘

)2

. (2)

This loss function is minimized to estimate the coefficients 𝜃0, 𝜃1, . . . , 𝜃𝑛, ensuring the best fit to
the data while maintaining simplicity and interpretability.

3.2.2 Ridge regression

Ridge regression extends linear regression by incorporating a regularization component to the loss
function, addressing issues like overfitting and multicollinearity. The regularization term penalizes
large coefficients, which helps improve the model’s generalization performance [28]. This penalty
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is proportional to the sum of the squared coefficients, and as the regularization parameter increases,
the coefficients are shrunk toward zero, reducing the model’s variance. Ridge regression balances
model complexity and predictive accuracy, making it suitable for datasets with highly correlated
predictors [29]. The ridge regression model minimizes the following loss function:

𝑛∑
𝑖=1

(
𝑦𝑖 − 𝜃0 −

𝑚∑
𝑘=1

𝜃𝑘𝑥𝑖𝑘

)2

+ 𝜆
𝑚∑
𝑘=1

𝜃2
𝑘 , (3)

where 𝜆 ≥ 0 is the regularization parameter that controls the trade-off between the model fit (the first
term,

∑𝑛
𝑖=1

(
𝑦𝑖 − 𝜃0 −

∑𝑚
𝑘=1 𝜃𝑘𝑥𝑖𝑘

)2) and the penalty term (𝜆
∑𝑚

𝑘=1 𝜃
2
𝑘). The parameter 𝜆 balances the

importance of minimizing prediction errors with controlling coefficient size, enhancing the model’s
robustness to overfitting [30].

3.2.3 Lasso regression

Lasso regression, like ridge regression, adds a regularization term to the linear regression loss
function but penalizes the absolute values of the coefficients rather than their squares. This L1
regularization approach encourages sparsity by shrinking less important coefficients to exactly zero,
effectively performing feature selection [30]. By reducing the magnitude of coefficients, lasso
regression simplifies the model while maintaining predictive accuracy, making it particularly useful
when dealing with high-dimensional datasets. The lasso regression model minimizes the following
loss function:

𝑛∑
𝑖=1

(
𝑦𝑖 − 𝜃0 −

𝑚∑
𝑘=1

𝜃𝑘𝑥𝑖𝑘

)2

+ 𝜆
𝑚∑
𝑘=1

|𝜃𝑘 |, (4)

where 𝜆 ≥ 0 is the regularization parameter that controls the strength of the penalty. The first
term,

∑𝑛
𝑖=1

(
𝑦𝑖 − 𝜃0 −

∑𝑚
𝑘=1 𝜃𝑘𝑥𝑖𝑘

)2, represents the sum of squared errors, while the penalty term,
𝜆
∑𝑚

𝑘=1 |𝜃𝑘 |, shrinks coefficients to reduce model complexity. Lasso regression’s ability to eliminate
irrelevant features makes it a powerful tool for predictive modeling in insurance, where identifying
key risk factors is critical. Lasso regression is efficient in reducing the number of features used
in a model due to its ability to drive the coefficients (slopes) of certain features to zero. As the
regularization parameter 𝜆 increases, the slope values gradually decrease.

3.2.4 K-nearest neighbours (KNN)

KNN is used for predicting numerical targets based on a similarity measure, such as distance func-
tions. Unlike linear or polynomial regression, KNN does not assume any underlying relationship
between the features and target variables. While linear regression and multiple regression rely
on the assumption of linear relationships, KNN regression leverages patterns in the data to make
predictions [31]. InKNN regression, the algorithm identifies the 𝑘 nearest neighbours to a given data
case and predicts the target value by calculating the mean value of those neighbours. An alternative
approach is using an average weighted inverse distance of the 𝑘 nearest neighbours. It is worth
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noting that KNN uses the same distance function for both regression and classification problems
[32]. Euclidean, Minkowski and Manhattan distances are commonly used for continuous variables,
while the Hamming distance function is used on categorical variables.

3.2.5 Support vector regression (SVR)

Support vector machines (SVMs) were first developed for classification tasks. They were later
extended to solve regression tasks [33]. In SVR, the problem is formulated as an optimisation task
to find the flattest 𝜖-insensitive tube that hasmost of the training instances. This involvesminimising
a convex 𝜖-insensitive loss function that combines the loss function and the geometrical properties
of the tube [34]. The optimisation task has a unique solution that can be solved using numerical
optimisation algorithms. Like SVMs, SVR assumes that the test and training data are from the
same unknown probability distribution function and are independent and identically distributed.

3.2.6 Decision trees

Decision trees have a tree-like structure with leaf nodes, internal nodes, branches and root nodes.
They output their predictions by learning a dataset’s decision rules. Each internal node shows the
test performed on a specific feature, and each branch shows the possible outcomes of that test. The
leaf or terminal nodes store the final class labels or regression predictions. The construction of a
decision tree involves recursively splitting the training data into subsets based on feature values
until a stopping criterion is met. This criterion can be defined by parameters, like the maximum
depth of the tree or the minimum number of samples required to split a node [35].

3.2.7 Random forests

Random forests combine the prediction outputs of multiple decision trees to make predictions. It
works by training numerous decision trees on a dataset with a tree-like structure and then aggre-
gating the output from each tree to produce a final result. This algorithm handles complex datasets
and captures intricate relationships between features by leveraging the ensemble nature of random
forests and the ability to adjust hyperparameters efficiently. The random forest regressor’s accuracy
and flexibility in customization make it a powerful technique in machine learning [11].

3.2.8 Gradient boosting model

It is an ensemble method that sequentially combines the predictions of multiple weak learners,
often decision trees. Its main goal is to improve a model’s overall predictive performance. It does
this by optimizing the model’s weights based on the previous iterations’ errors, thereby reducing
the prediction errors gradually [11]. By leveraging the strengths of individual weak learners and
iteratively learning from their mistakes, gradient boosting creates a powerful and accurate ensemble
model. It is efficient in handling complex datasets and capturing complex relationships between
features [36].
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3.2.9 Extreme gradient boosting(XGBoost)

XGBoost is an enhanced gradient boosting algorithm. XGBoost minimises an objective function
that combines a loss function with regularisation terms, such as L1 and L2 regularisation. By
optimising the regularised objective function, XGBoost aims to find the best possible predictions
by iteratively constructing weak models and adjusting their predictions based on the residuals. This
iterative process leads to highly accurate predictions and is a key characteristic of XGBoost [37].

3.2.10 Shapley additive explanation (SHAP)

SHAP has gained popularity as amethod for interpretingmachine learningmodel predictions. It was
introduced by [3] and helps identify which features contribute most to the predictions. It is based on
game theory, which calculates the contribution of each player (features) to the playout (predictions).
SHAP calculates a score for each feature in the model, which represents its weight to the model
output. To get the scores, it considers all combinations between the features to cover all cases
where all features and a subset of features are used. It is suitable for explaining complex models
such as XGBoost, as it provides both local and global insights into a model’s behaviour. Global
interpretability involves understanding the model’s overall behaviour, that is, which features are
generally the most important across all predictions. It ranks features based on their influence /impact
on the model’s output. Local interpretability focuses on individual predictions. For example, if our
model predicts the premium to be paid, SHAP breaks down the exact contributions of each feature
to that prediction [38, 39].

3.2.11 Model evaluation

Performance metrics or error measurements are used to compare predicted values to actual data
values [40]. The following performance evaluation metrics were used in this study:

• R-Square Score (r2): It measures how well the predictions fit the real values. r2 is calculated
as the explained variance divided by the total variance and ranges from 0 to 1. A higher r2
value closer to 1 generally shows that the model is performing well.

𝑟2 = 1 −
∑𝑚

𝑖=1(𝑦𝑖 − 𝑦𝑖)2∑𝑚
𝑖=1(𝑦𝑖 − 𝑦𝑖)2 , (5)

𝑚 is the sample size, 𝑦𝑖 is the actual value, 𝑦𝑖 is the mean, 𝑦𝑖 is the predicted value,
∑𝑚

𝑖=1(𝑦𝑖 −
𝑦𝑖)2 represents the sum of squared regression errors, and

∑𝑚
𝑖=1(𝑦𝑖 − 𝑦𝑖)2 represents the sum of

squared total errors. [41].

• Mean Square Error (MSE): the average of the squared differences between the predicted
and actual values.

𝑀𝑆𝐸 =
1
𝑚

𝑚∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2, (6)

𝑚 is the sample size, 𝑦𝑖 the actual value, and 𝑦𝑖 the prediction for the 𝑖𝑡ℎ sample. A lower
MSE value shows better performance.

358

https://jaiai.org/ | August 2025



Millicent Auma Omondi et al.

• Mean Absolute Error (MAE): Calculates the average of the absolute differences between
the predictions and actual values.

𝑀𝐴𝐸 =
1
𝑚

𝑚∑
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |, (7)

where 𝑚 is the number of samples, 𝑦𝑖 is the actual value, and 𝑦𝑖 is the predicted value for the
𝑖𝑡ℎ sample. Like MSE, a lower MAE value shows a good performance.

4. RESULTS AND DISCUSSION

In this section the data preprocessing steps, model development, and the obtained results are dis-
cussed.

4.1 Data Pre-processing

The first step was examining missing values and duplicates. The dataset had some missing values,
but no duplicates. Columns with more than 70% of missing values were dropped, and for those
with less than this threshold, the missing data were imputed using the mean. Two new features,
”client age” and ”building age,” were created by calculating the difference between the client’s date
of birth and the construction date of the building and the date the insurance coverage was purchased,
respectively.

Data visualisation was carried out to help in identifying patterns and relationships between vari-
ables (correlation), outliers and the data’s distribution. The presence of outliers in the dataset was
addressed using the interquartile range (IQR) and the Gaussian-based Winsorizer method. The two
methods manage outliers by capping extreme values. The categorical data were encoded into a
numerical format using label encoding. Data standardisation ensured the numerical variables were
on a comparable scale. This was done by calculating z-scores using the scipy.stats.zscore()
function.

FIGURE 2a, shows that clients who had reported a claim in the past three years paid higher pre-
miums compared to those who had not reported any claims in the same period. This suggests
that a client’s claim history influences the insurance premium charged. Additionally, FIGURE 2b,
demonstrates that properties with more bedrooms are associated with higher insurance premiums.
This suggests that the size of the property impacts the cost of insurance.

A correlation plot provides a graphical representation of the relationships between variables with
values between −1 and 1. The relationship could be either positive or negative. A strong positive
relationship is shown by a value near 1, while a strong negative relationship is shown by a value
near −1.

The highly correlated variables were removed to avoid redundancy. The heatmap in FIGURE 3,
illustrates the dropped highly correlated variables with a correlation threshold of 0.90. In the end,
50 variables were left after dropping 6 highly correlated variables.
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(a) Premium vs Claim3years. (b) Premium vs Number of bedrooms.

Figure 2: Premium values under different feature: (a) Claim3years, (b) Number of bedrooms.

Figure 3: Highly correlated values.

4.2 Fitting and Evaluating the Models

Before fitting the supervised ML models, the dataset was divided into two: 80% for training and
20% for testing. The random seed value was set 42 for reproducibility. To mitigate overfitting,
𝑘-fold cross-validation (CV) was applied, dividing the training set into 5 folds. The training set is
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partitioned into five folds through five iterations. Each iteration used four folds for training and the
remaining one fold for validation. The results across all the folds were then averaged [42].

4.2.1 Selecting the best model

XGBoost had the highest r2 score and the lowest values for both MSE and MAE on the test set.
These results showed that XGBoost outperformed the other models in accurately predicting home
insurance premiums. In this context, XGBoost is therefore regarded as the most effective model
for predicting home insurance premiums. On the other hand, support vector regression (SVR)
performed poorly in providing accurate premium predictions. It had relatively higher values for
both MAE and MSE compared to the other models. Therefore, SVR may not be the most suitable
choice for predicting home insurance premiums in our case. This can be seen in Table 1.

Table 1: Model Performance on test set: Best Scores are in Bold

Model R Squared R Squared (CV) MSE MAE
Linear Regression 0.7161 0.7125 2224.03 35.97
Ridge Regression 0.7161 0.7126 2224.03 35.97
Lasso Regression 0.7064 0.7026 2299.88 36.53
Decision Tree 0.6374 0.6336 2840.42 36.32
Random Forest 0.8137 0.8163 1458.58 26.34
KNN 0.6556 0.6516 2697.71 36.50
Gradient Boosting 0.8014 0.7978 1515.83 25.43
XGBoost 0.8344 0.8305 1297.52 25.00
SVR 0.0041 0.0050 7801.03 69.14
1Evaluation of various regressionmodels. R Squared (CV) refers to the average
R Squared from 5-fold cross-validation.
2Bolded values indicate the best performance for each metric on the test set.

4.2.2 Hyperparameter tuning

The study applied 9 machine learning models to the prediction problem. These models were later
narrowed down to the top 3 best-performing models, that is, random forest, gradient boosting and
XGBoost. This was to save time on tuning the models’ hyperparameters by focusing on the best-
performing ones. For hyperparameter tuning, the GridSearchCV was applied to the 3 models to
test different combinations of hyperparameters to improve their performance. These 3 ML models
are all supervised ensemble machine-learning techniques that are known for their effectiveness in
regression tasks.

Fine-tuning the hyperparameters led to improved predictive performance for these three models.
XGBoost still outperformed both gradient-boosting and random forest models in predicting home
insurance premiums, as seen in TABLE 2.
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Table 2: Model Performance on test set after Hyperparameter Tuning: Best Scores are in Bold

Model R Squared R Squared (CV) MSE MAE
Random Forest 0.8173 0.8134 1430.48 26.53
Gradient Boosting 0.8307 0.8279 1325.36 25.43
XGBoost 0.8380 0.8352 1269.08 24.62

Model evaluation metrics after hyperparameter tuning.

4.3 Feature Importance and Final Xgboost Model

The study focused on XGBoost as it had the best performance compared to random forest and
gradient boosting, and proceeded to apply the Shapley additive explanations (SHAP) method on
the XGBoost model to determine the most influential features, improving its interpretability capa-
bilities. SHAP assigns a numerical value to each feature, indicating its contribution to the model’s
predictions. The most influential feature has the highest value. SHAP is applied to determine the
top 𝑘 features that highly contribute to predictions. A SHAP summary plot is a visual representation
that illustrates the contribution of each feature to the model’s prediction. Features are listed on the
vertical axis according to their level of importance, and horizontal bars represent the contribution
of each feature to the prediction [43]. In this study, the 𝑘 values were 10, 20, 30, 40 and 50. The top
40 feature, as seen in FIGURE 4a, produced the highest results with an R-squared score of 0.8551
and 0.8351 for the train and test sets, respectively, as seen in TABLE 3, before hyperparameter
tuning. Therefore, these 40 features were selected to fit the final model, ensuring its focus on
the most influential features. This suggests that instead of insurance companies collecting a lot of
information from prospective clients, they could narrow it down to only a few key features that
significantly contribute to the machine learning models. We only highlighted the top 20 important
features on the SHAP summary plot as seen in FIGURE 4b.

Table 3: XGBoost Performance on Train and Test after applying SHAP

R Squared MSE MAE
Train 0.8551 1120.97 23.50
Test 0.8351 1291.48 24.95

Performance metrics for XGBoost model
after applying SHAP.

According to FIGURE 4b, the feature ’CONTENTS COVER’ was the most influential factor. It
indicates whether personal objects are under the cover or not. Additionally, the number of bedrooms
in the house, the age of the building, and the property typewere also identified as significant features.
Adding such important features improves the model’s ability to consider important factors that
impact insurance premiums accurately.
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(a) Top-k Features. (b) Important Features.

Figure 4: Visualization of SHAP feature importance.

4.3.1 Fitting the final model: Xgboost

Hyperparameter tuning using GridSearchCV was applied on the XGBoost model fit on the 40
features. A combination of hyperparameters like n_estimators(50, 100, 200), max_depth(3, 5, 7),
learning_rate(0.01, 0.1, 0.2), and gamma (0, 0.1, 0.2, 0.3, 0.4). This improved the model’s perfor-
mance slightly with an r2 score of 0.8799 and 0.8383 on the train and test sets, respectively, as seen
in TABLE 4. This implies that approximately 84% of the premiums are correctly predicted by the
model. The MAE and MSE are consistent across the train and test sets, implying that the model
generalises well without overfitting.

Table 4: Hyperparameter-Tuned: Final XGBoost Performance on Train, Test, and Cross validation
(CV)

R Squared MSE MAE
Train 0.8799 929.27 21.37
Test 0.8383 1266.87 24.56
CV 0.8351 1278.71 24.64

Performancemetrics for the XGBoost model
after hyperparameter tuning.
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4.4 Prediction Error Distribution Analysis

FIGURE 5a and FIGURE 5b, show the prediction error distribution for training and testing sets,
respectively. The distribution of prediction errors helps in evaluating the consistency and general-
izability of the final XGBoostmodel in predicting home insurance premiums. The error distributions
in both cases are centred around zero, with a symmetrical bell-shaped curve. This shows that the
model’s predictions are not biased or skewed, implying that the errors are relatively balanced in
both directions. The training set, FIGURE 5a, shows a slightly narrower contribution due to the
models’ exposure to the data during training. The testing set, FIGURE 5b, displays a similar shape,
demonstrating that the model generalises well to unseen data. These patterns enhance the reliability
of the model as reported by the evaluation metrics, that is, the R-squared, MSE and MAE.

(a) Train: prediction error distribution using the top 40
SHAP-ranked features.

(b) Test: prediction error distribution using the top 40
SHAP-ranked features.

Figure 5: Prediction error distributions with top-40 SHAP-ranked features on train and test sets.

5. CONCLUSION

This study applied various supervised regression-based models to predict home insurance premiums
based on customer and property traits. XGBoost outperformed the other applied regression models.
The SHAP-based feature selection method was applied on the clean dataset that had 50 features.
SHAP showed that the top 40 most influential features yielded the best performance, demonstrating
its effectiveness in improving model interpretability while maintaining high performance. This
proves that reduced features can still obtain good predictive results. Fewer features also tend to
lower the complexity of the model. The final XGBoost model fit on the top 40 important features
had an R-squared score of 0.8799 and 0.8383 on the train and test set, respectively. The MAE and
MSE on both the training and test sets were consistent, illustrating the model’s generalizability.
On the other hand, the predictive error distribution plots showed the robustness of the model in
capturing the main structure of the data on different premium price changes.

In conclusion, the results show that applying SHAP feature selection provides a reliable, inter-
pretable and high-performing model for insurance premium prediction. XGBoost model can be
applied by insurance companies in building premium prediction models due to its high performance.
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5.1 Future Work

One limitation of the study is the inaccessibility of a local company’s home insurance data and
the data is possibly outdated covering the years 2007 to 2012. For future research, we recommend
applying similar machine learning regression models to a more recent and locally sourced insurance
data set. This would allow themodel to be evaluated in real time setting and compare its performance
on different companies data.

We acknowledge that our work only focused on machine learning models to predict home insurance
premiums. In future work, we propose to apply deep learning methods on premium predictions. We
applied stochastic AI implying that the predicted outcomes maybe uncertain and vary even with the
same initial set conditions and actions.

Abbreviations

ML Machine Learning
SVM Support Vector Machine
SVR Support Vector Regression
DL Deep Learning
CV Cross-validation
NN Neural Network
MSE Mean Squared Error
MAE Mean Absolute Error
KNN K-Nearest Neighbors
UPC United Property and Casualty Insurance Co.
XGBoost Extreme Gradient Boosting
RF Random Forest
DT Decision Tree
ANN Artificial Neural Network
r2 R-Squared
SHAP Shapley additive explanations
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6. Appendix

Table A1: Description of the first half of variables in the home insurance dataset, including their
type (discrete or continuous) and role as input or output in the predictive model. These
variables capture customer, property, and policy characteristics for premium prediction.

Variable Description Type Input/
Output

QUOTE_DATE Day the quotation was made Discrete Input
COVER_START Beginning of the cover payment Discrete Input
CLAIM3YEARS 3-year loss history Discrete Input
P1_EMP_STATUS Client’s professional status Discrete Input
P1_PT_EMP_STATUS Client’s part-time professional status Discrete Input
BUS_USE Commercial use indicator Discrete Input
CLERICAL Administration office usage indicator Discrete Input
AD_BUILDINGS Building coverage - self damage Discrete Input
RISK_RATED_AREA_B Geographical classification of risk -

building
Continuous Input

SUM_INSURED_BUILDINGS Assured sum - building Continuous Input
NCD_GRANTED_YEARS_B Bonus malus - building Continuous Input
AD_CONTENTS Coverage of personal items - self

damage
Discrete Input

RISK_RATED_AREA_C Geographical classification of risk -
personal objects

Continuous Input

SUM_INSURED_CONTENTS Assured sum - personal items Continuous Input
NCD_GRANTED_YEARS_C Malus bonus - personal items Continuous Input
CONTENTS_COVER Coverage - personal objects indicator Discrete Input
BUILDINGS_COVER Cover - building indicator Discrete Input
SPEC_SUM_INSURED Assured sum - valuable personal

property
Continuous Input

SPEC_ITEM_PREM Premium - personal valuable items Continuous Input
UNSPEC_HRP_PREM Unknown premium component Continuous Input
P1_DOB Date of birth of the client Discrete Input
P1_MAR_STATUS Marital status of the client Discrete Input
P1_POLICY_REFUSED Policy emission denial indicator Discrete Input
P1_SEX Customer sex Discrete Input
APPR_ALARM Appropriate alarm indicator Discrete Input
APPR_LOCKS Appropriate lock indicator Discrete Input
BEDROOMS Number of bedrooms Continuous Input
ROOF_CONSTRUCTION Code of roof construction type Continuous Input
WALL_CONSTRUCTION Code of wall construction type Continuous Input
FLOODING House susceptible to floods Discrete Input
LISTED National heritage building status Continuous Input
MAX_DAYS_UNOCC Number of days unoccupied Continuous Input
NEIGH_WATCH Vigils of proximity present Discrete Input
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Table A2: Description of the second half of variables in the home insurance dataset, including their
type (discrete or continuous) and role as input or output in the predictive model. These
variables further detail property and policy characteristics for premium prediction.

Variable Description Type Input/
Output

OCC_STATUS Occupancy status Discrete Input
OWNERSHIP_TYPE Type of membership Continuous Input
PAYING_GUESTS Presence of paying guests Continuous Input
PROP_TYPE Type of property Continuous Input
SAFE_INSTALLED Safe installation indicator Discrete Input
SEC_DISC_REQ Premium reduction for security Discrete Input
SUBSIDENCE Subsidence indicator Discrete Input
YEARBUILT Year of construction Continuous Input
CAMPAIGN_DESC Description of the marketing

campaign
Continuous Input

PAYMENT_METHOD Method of payment Discrete Input
PAYMENT_FREQUENCY Frequency of payment Continuous Input
LEGAL_ADDON_PRE_REN Legal fees option before 1st

renewal
Discrete Input

LEGAL_ADDON_POST_REN Legal fees option after 1st renewal Discrete Input
HOME_EM_ADDON_PRE_REN Emergencies option before 1st

renewal
Discrete Input

HOME_EM_ADDON_POST_REN Emergencies option after 1st
renewal

Discrete Input

GARDEN_ADDON_PRE_REN Gardens option before 1st renewal Discrete Input
GARDEN_ADDON_POST_REN Gardens option after 1st renewal Discrete Input
KEYCARE_ADDON_PRE_REN Key replacement option before 1st

renewal
Discrete Input

KEYCARE_ADDON_POST_REN Key replacement option after 1st
renewal

Discrete Input

HP1_ADDON_PRE_REN HP1 option before 1st renewal Discrete Input
HP1_ADDON_POST_REN HP1 option after 1st renewal Discrete Input
HP2_ADDON_PRE_REN HP2 option before 1st renewal Discrete Input
HP2_ADDON_POST_REN HP2 option after 1st renewal Discrete Input
HP3_ADDON_PRE_REN HP3 option before 1st renewal Discrete Input
HP3_ADDON_POST_REN HP3 option after 1st renewal Discrete Input
MTA_FLAG Mid-term adjustment indicator Discrete Input
MTA_FAP Bonus up to date of adjustment Continuous Input
MTA_APRP Premium adjustment for mid-term Continuous Input
MTA_DATE Date of mid-term adjustment Discrete Input
LAST_ANN_PREM_GROSS Total premium for the previous

year
Continuous Output

POL_STATUS Policy status Discrete Input
Police Policy number Discrete Input
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